Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 64(6): 650-659, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35048315

RESUMO

D-Mannose has great value in the treatment of chronic diseases. D-Mannose isomerase can catalyze the bioconversion of D-fructose to D-mannose. Therefore, a novel D-mannose isomerase gene (Strh-MIase) from Stenotrophomonas rhizophila strain IS26 was expressed, purified, and characterized for the industrial production of D-mannose. The specific activities of the Strh-MIase for D-mannose and D-fructose were 437.5 ± 0.8 U/mg and 267.2 ± 0.7 U/mg. Its optimal temperature and pH were 50 °C and 7.0. The enzymatic bioconversion produced 25 g/L D-mannose from concentration D-fructose (100 g/L) in 6 h by recombinant Strh-MIase, resulting in a final yield of 25%. Sodium phosphate inhibition has little influence on D-mannose production when a high concentration of D-fructose is used as substrate. We demonstrate that the metal ions improve the efficiency of D-mannose isomerase because of the enhancement of its thermostability. Moreover, the possible catalytic residues of Strh-MIase were identified by site-directed mutagenesis.


Assuntos
Aldose-Cetose Isomerases , Manose , Aldose-Cetose Isomerases/metabolismo , Frutose/química , Concentração de Íons de Hidrogênio , Cinética , Stenotrophomonas , Especificidade por Substrato , Temperatura
2.
J Agric Food Chem ; 69(29): 8268-8275, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34231359

RESUMO

Cellobiose 2-epimerase (CE) can catalyze bioconversion of lactose to its prebiotic derivative epilactose. The catalytic property of a novel CE from Treponema brennaborense (Trbr-CE) was investigated. Trbr-CE showed the highest catalytic efficiency of epimerization toward lactose among all of the previously reported CEs. This enzyme's specific activity could reach as high as 208.5 ± 5.3 U/mg at its optimum temperature, which is 45 °C. More importantly, this enzyme demonstrated a considerably high activity at low temperatures, suggesting Trbr-CE as a promising enzyme for industrial low-temperature production of epilactose. This structurally flexible enzyme exhibited a comparatively high binding affinity toward substrates, which was confirmed by both experimental verification and computational analysis. Molecular dynamics (MD) simulations and binding free energy calculations were applied to provide insights into molecular recognition upon temperature changes. Compared with thermophilic CEs, Trbr-CE presents a more negative enthalpy change and a higher entropy change when the temperature drops.


Assuntos
Celobiose , Racemases e Epimerases , Lactose , Racemases e Epimerases/genética , Temperatura , Treponema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...